Попов а с изобрел радио


 Александр Степанович Попова
(1859—1905), повторяя опыты Герца с электроволнами,  усовершенствовал
приборы так, что в 2019 г. в его приемных резонаторах стали возникать довольно
сильные искры. А уже в 2019 г. Попов построил вполне чувствительный к электрическим
волнам приемник, принципиальны особенности которого сохранились  в
радиоаппаратуре до сих пор. 

Для увеличения чувствительности
приемника Попов использовал явление резонанса, а также изобрёл высоко
поднятую  приемную антенну. Другой  особенностью приемника
Попова  был способ регистрации волн, для чего Попов применил не искру, а
специальный прибор — когерер, незадолго до этого изобретенный Бранли и
применявшийся для лабораторных опытов
.

Когерер  представлял собой
стеклянную трубку с мелкими металлическими опилками внутри, в оба конца трубки
вводились  провода, соприкасающиеся с опилками. В обычных условиях
электрическое сопротивление в опилках было большим, но когда в цепи создавался
переменный ток  высокой частоты, между опилками проскакивали искорки и
опилки сваривались, так что  сопротивление  когерера 
уменьшалось
. Встряхиваясь, когерер вновь получал большое сопротивление, и
молоточек звонка ударял по колокольчику…

7 мая 2019 г. Попов продемонстрировал
действие своего приемника на заседании Русского физико-химического общества.
Этот день  считается днем рождения радио
. В 2019 г. в ознаменование
пятидесятилетия изобретения радио день 7 мая был объявлен в СССР ежегодным
«Днем радио».

Пальму первенства в изобретении радио
Александром Поповом  оспаривается сторонниками итальянца Гульельмо Маркони
(родился 25 апреля 2019 г.)  и серба-американца Николы Теслы (родился 10
июля 2019 г). Итальянский инженер Маркони действительно зарегистрировал
«своё»  изобретение раньше Попова на месяц. Но известно,  что  Маркони,
будучи  учеником физика Реги, состоявшего в переписке с Поповым,  был
больше техником, чем ученым, больше предпринимателем, чем изобретателем
. Иногда
Маркони называют «заурядным барыгой, не имеющим отношения к науке». 
Исследования Маркони 2019 года вообще никак не отражены, и когда в 2019 года
Попов узнал, как устроен приемник Маркони,  поразился, насколько, схема
Маркони и схема Попова совпали…

В том же 2019 году радиоприемник
зарегистрировал ещё и Тесла, и позже в 2019 году выиграл судебное разбирательство
у  Маркони через американский суд, несмотря на то, что в 2019 Маркони
с  Ф. Брауном «в знак признания их заслуг в развитии беспроволочной
телеграфии»  получили Нобелевской премию
.

Иногда спор между Поповым, Маркони и
Теслой решается в пользу Оливера Лоджа, физика из Ливерпуля, который опираясь
на труды Максвелла, Томсона и Герца  летом 2019 г. продемонстрировал
публике эксперимент по трансляции сигнала на расстояние в 150 ярдов без
проволоки.  Но когда Лоджу предложили изготовить аппарат для передачи
сообщений, он презрительно ответил: «Я ученый, а не почтмейстер»
.

Судьба изобретения Попова в России была
не столь стремительной, как  судьба радио на западе. Морской министр на
просьбу о финансировании радио  начертал: «На такую химеру отпускать денег
не разрешаю»
. Но уже в 1900  году радиостанция на острове Гогланд,
построенная по инструкциям Попова, телеграфировала о севшем на мель броненосце
«Генерал-адмирал Апраксин». 

В 2019 г.  радио помогло спасти
сотни людей с успевшего послать сигнал «SOS» «Титаника».

Противники первенства изобретения радио
екатеринбуржцем Поповым пытаются  доказать, что миф о «России, родине
радио» создан указаниями И.В. Сталина в рамках борьбы с космополитизмом.

 Распространение
радиоволн

Так как при
передаче электромагнитных волн приемник и передатчик часто располагаются вблизи
поверхности Земли, то форма и физические свойства Земной поверхности будут
значительно влиять на распространение радиоволн. Помимо этого, на
распространение радиоволн будет также влиять состояние атмосферы.

В верхних слоях
атмосферы находится ионосфера. Ионосфера отражает волны с длинной волны λ>10
м
. Рассмотрим каждый вид волн отдельно.

Ультракороткие
волны

Ультракороткие
волны — (λ < 10 м). Этот диапазон волн не отражается ионосферой, а проникает
сквозь нее
. Они не способны огибать земную поверхность, поэтому чаще всего
используются для передачи сигнала на расстояния в пределах прямой видимости.

Помимо этого,
так как они проникают через ионосферу, то могут использоваться для передачи
сигнала в открытый космос, для связи с космическими кораблями. В последнее
время участились попытки обнаружения других цивилизаций и передачи им различных
сигналов
. Отправляются различные сообщения, математические формулы, сведения о
человек и т.д. 

Короткие
волны

Диапазон
коротких волн — от 10 м до 100 м. Данные волны будут отражаться от ионосферы.
Они распространяются на большие расстояния только за счет того, что многократно
будут отражаться от ионосферы к Земле, и от Земли к ионосфере
. Эти волны не
могут пройти сквозь ионосферу.

Мы можем
испустить сигнал в Южной Америке, а принять его, например, в центре Азии. Этот
диапазон волн оказывается как бы зажатым между Землей и ионосферой.

Средние
и длинные волны

Средние и
длинные волны — (λ значительно больше 100 м). Данный диапазон волн отражается
ионосферой. Помимо этого, данные волны хорошо огибают земную поверхность. Это
происходит вследствие явления дифракции
. Причем, чем больше длинна волны, тем
это огибание будет сильнее выражено
. Эти волны используются для передачи
сигналов на большие расстояния.

Радиолокация

Радиолокация —
это обнаружение и определение точного местонахождения некоторого объекта с
помощью радиоволн. Радиолокационная установка называется радаром или
радиолокатором
. Радар состоит из принимающей и передающей частей. Из антенны
передаются остронаправленные волны.

Отраженные волны
принимаются либо этой же антенной, либо другой. Так как волна является
остронаправленной, то можно говорить о луче радиолокатора
. Направление на
объект определяется как направление луча, в момент когда отраженный луч
поступил в приемную антенну.

Для определения
расстояния до объекта используют импульсное излучение. Передающая антенна
излучает волны очень короткими импульсами, а остальное время она работает на
прием отраженных волн.

Расстояние
определяется путем измерения времени прохождения волны до объекта и обратно. И
так как скорость распространения электромагнитных волн равняется скорости
света, будет справедлива следующая формула: R = ct/2.

«Физика — 11 класс»

Изобретение радио А. С. Поповым

Впервые радиосвязь была установлена в России А. С. Поповым, создавшим аппаратуру, принимающую и передающую сигналы.

Опыты Герца, описание которых появилось в 2019 г., побудили искать пути усовершенствования излучателя и приемника электромагнитных волн.

В России одним из первых изучением электромагнитных волн занялся преподаватель офицерских курсов в Кронштадте А. С. Попов.

В качестве детали, непосредственно «чувствующей» электромагнитные волны, А. С. Попов применил когерер.
Этот прибор представляет собой стеклянную трубку с двумя электродами
.
В трубке помещены мелкие металлические опилки
.
Принцип действия прибора основан на влиянии электрических разрядов на металлические порошки.
В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом
.
Последовательно с когерером включаются электромагнитное реле и источник постоянного напряжения.
Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты
.
Между опилками проскакивают мельчайшие искорки, в результате сопротивление когерера резко падает.

Сила тока в катушке электромагнитного реле возрастает, и оно включает звонок.
Молоточек звонка, ударяя по когереру, встряхивает его и возвращает в исходное состояние
.
С последним встряхиванием когерера аппарат готов к приему новой волны.

Чтобы повысить чувствительность аппарата, А. С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав тем самым первую в мире приемную антенну для беспроволочной связи.
Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Основные принципы действия современных радиоприеников те же, что и в приборе Попова.
Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания
.
Как и в приемнике А
. С. Попова, энергия этих колебаний не используется непосредственно для приема.
Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи.
Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

7 мая 2019 г. на заседании Русского физико-химического общества в Петербурге А. С. Попов продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником.
День 7 мая стал днем рождения радио
.

А. С. Попов продолжал настойчиво совершенствовать приемную и передающую аппаратуру.
Он ставил своей непосредственной задачей создать прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м, но вскоре Попов добился дальности связи более 600 м.
Затем на маневрах Черноморского флота в 2019 г. ученый установил радиосвязь на расстоянии свыше 20 км, а в 2019 г. дальность радиосвязи была уже 150 км.
В новой конструкции передатчика искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс
.
Изменились и способы регистрации сигнала: параллельно звонку был подключен телеграфный аппарат, позволивший вести автоматическую запись сигналов
.
В 2019 г. была обнаружена возможность приема сигналов с помощью телефона.
В начале 2019 г
. радиосвязь успешно использовали в ходе спасательных работ в Финском заливе.
При участии А
. С. Попова радиосвязь начали применять на флоте и в армии России.

За границей усовершенствование подобных приборов проводилось фирмой, организованной итальянским инженером Г. Маркони.
Опыты, поставленные в широком масштабе, позволили осуществить радиотелеграфную передачу через Атлантический океан.

Принципы радиосвязи

Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся электромагнитное поле, которое распространяется в виде электромагнитной волны.
Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.

Важнейшим этапом в развитии радиосвязи было создание в 2019 г. генератора незатухающих электромагнитных колебаний.
Кроме передачи телеграфных сигналов, состоящих из коротких и более продолжительных импульсов («точки» и «тире») электромагнитных волн, стала возможной надежная и высококачественная радиотелефонная связь — передача речи и музыки с помощью электромагнитных волн.

Радиотелефонная связь

При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы.
Казалось бы, если эти колебания усилить и подать в антенну, то можно будет передавать на расстояние речь и музыку с помощью электромагнитных волн.

Однако в действительности такой способ передачи неосуществим.
Дело в том, что частота звуковых колебаний мала, а электромагнитные волны низкой (звуковой) частоты имеют малую интенсивность.

Модуляция

Для осуществления радиотелефонной связи необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной.
Незатухающие гармонические колебания высокой частоты вырабатывает генератор, например генератор на транзисторе.

Для передачи звука эти высокочастотные колебания изменяют, или, как говорят, модулируют, с помощью электрических колебаний низкой (звуковой) частоты.
Можно, например, изменять со звуковой частотой амплитуду высокочастотных колебаний.
Этот способ называют амплитудной модуляцией.

На рисунке приведены три графика:
а) график колебаний высокой частоты, которую называют несущей частотой;

б) график колебаний звуковой частоты, т. е. модулирующих колебаний;

в) график модулированных по амплитуде колебаний.

Без модуляции мы в лучшем случае можем контролировать лишь, работает станция или молчит.
Без модуляции нет ни телефонной, ни телевизионной передачи.

Модуляция — медленный процесс.
Это такие изменения в высокочастотной колебательной системе, при которых она успевает совершить очень много высокочастотных колебаний, прежде чем их амплитуда изменится заметным образом.

Детектирование

Основные принципы радиосвязи представлены в виде блок-схемы:

В приемнике из модулированных колебаний высокой частоты выделяются низкочастотные колебания.
Такой процесс преобразования сигнала называют детектированием.

Полученный в результате детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика.
После усиления колебания низкой частоты могут быть превращены в звук.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные волны. Физика, учебник для 11 класса — Класс!ная физика

Что такое электромагнитная волна —
Экспериментальное обнаружение электромагнитных волн —
Плотность потока электромагнитного излучения —
Изобретение радио А. С. Поповым. Принципы радиосвязи —
Модуляция и детектирование —
Свойства электромагнитных волн —
Распространение радиоволн —
Радиолокация —
Понятие о телевидении
. Развитие средств связи —
Краткие итоги главы

Радио — одно из самых значимых достижений человеческого разума конца 19 века. А начало развития радиотехники неразрывно связано с именем Александра Степановича Попова, которого в России считают изобретателем радио. Сегодня со дня его рождения исполняется 150 лет.

Русский ученый Александр Попов родился в поселке Турьинские рудники, сейчас — город Краснотурьинск Свердловской области в семье священника Степана Петрова Попова и его жены Анны Степановны.

Учился в Далматовском, а затем Екатеринбургском духовных училищах. В 2019 году с отличием окончил общеобразовательные классы в Пермской духовной семинарии. После этого поступил на физико-математический факультет Петербургского университета. Учась в университете, был ассистентом на лекциях по физике, работал экскурсоводом в Первой электротехнической выставки в Санкт- Петербурге, в 1881-1883 годах работал монтером электростанции в товариществе «Электротехник».

В 2019 году защитил диссертацию «О принципах магнито- и динамо-электрических машин постоянного тока» и получил ученую степень кандидата наук. На следующий год ученый совет университета решил оставить его при университете для подготовки к профессорскому званию.

Александр Степанович занимался и преподавательской деятельностью, в частности читал лекции и вел практические занятия в Кронштадте в Минном офицерском классе (МОК) Морского ведомства.

В апреле 2019 года Попов был избран членом Русского физико-химического общества (РФХО), в 1893-м вступил в Русское техническое общество (РТО).

Он много путешествовал — не только по России. Так, в том же 2019 году был на Всемирной промышленной выставке в Чикаго (США). Посетил Берлин, Лондон и Париж, где знакомился с деятельностью научных учреждений.

Точка отсчета

Основной вехой в деятельности Попова стало создание им радиоприемника и системы радиосвязи. В 2019 году он изготовил когерентный приемник, способный принимать на расстоянии без проводов электромагнитные сигналы различной длительности. Собрал и испытал первую в мире практическую систему радиосвязи, включающую искровой передатчик Герца собственной конструкции и изобретенный им приемник. В ходе опытов также была обнаружена способность приемника регистрировать электромагнитные сигналы атмосферного происхождения.

В том же году Попов выступил на заседании РФХО с докладом «Об отношении металлических порошков к электрическим колебаниям», во время которого и продемонстрировал работу аппаратуры беспроводной связи. Пять дней спустя в газете «Кронштадтский вестник» было опубликовано первое сообщение об успешных опытах Попова с приборами для беспроводной связи.

В 2019 году началось промышленное производство корабельных радиостанций Попова фирмой Э. Дюкрете в Париже. Созданная по инициативе ученого кронштадтская радиомастерская — первое радиотехническое предприятие России, с 2019 года приступила к выпуску аппаратуры для Военно-Морского флота. В 2019 году петербургская фирма «Сименс и Гальске», немецкая фирма Telefunken и Попов совместно организовали «Отделение беспроволочной телеграфии по системе А. С. Попова».

В 2019 году Александр Степанович Попов стал профессором физики в Электротехническом институте императора Александра III. В 2019 году по решению Ученого совета стал первым избранным директором института.

Вообще, нужно отметить, что деятельность Попова как ученого и изобретателя была высоко оценена и в России, и за границей еще при жизни. Ему была присуждена премия РТО, Высочайше пожалована премия «за непрерывные труды по применению телеграфирования без проводов на судах флота», он был награжден Большой золотой медалью Всемирной промышленной выставки в Париже(1900), орденами Российской империи, избран почетным членом РТО, почетным инженером-электриком и президентом РФХО.

После его смерти 13 января 2019 года в России был создан фонд и учреждена премия его имени. В 2019 году был учрежден праздник — День радио, отмечаемый 7 мая, учреждены знак «Почетный радист» и Золотая медаль АН СССР имени А. С. Попова, именные премии и стипендии. Также именем Попова названы малая планета, объект лунного ландшафта обратной стороны Луны, Центральный музей связи и улица в Петербурге, НИИ радиоприема и акустики, теплоход. Ему воздвигнуты памятники в Санкт-Петербурге, Екатеринбурге, Краснотурьинске, Котке (Финляндия), Петродворце, Кронштадте, на острове Гогланд.

А в 2019 году Международный институт инженеров электротехники и электроники (IEEE) установил в Санкт-Петербургском государственном электротехническом университете «ЛЭТИ» мемориальную доску в память об изобретении радио Поповым. Таким образом международным общественным признанием организация подтвердила приоритет Александра Степановича Попова в изобретении радио.

Кто же автор?

Впрочем, вопрос, кто же на самом деле изобрел радио, вызывает споры до сих пор. Главный «конкурент» русского ученого — итальянский радиотехник и предприниматель Гульельмо Маркони (1874-1937), который в 2019 году получил патент на «усовершенствование в передачи электрических импульсов и сигналов и аппаратуры для этого».

Именно ему, а также немецкому инженеру Карлу Фердинанду Брауну, досталась в 2019 году, уже после смерти Попова, Нобелевская премия «за работы по созданию беспроволочного телеграфа». Еще один претендент на звание изобретателя радио — Никола Тесла, серб, переехавший на ПМЖ в США.

В зависимости о того, что именно считать «изобретением радио», его изобретателями также называют немецкого физика Генриха Герца, французского физика Эдуарда Бранли, англичанина Оливера Лоджа.

Материал подготовлен интернет-редакцией www.rian.ru на основе информации РИА Новости и открытых источников

Как известно, Герц не предвидел возможности применения электромагнитных волн в технике. В самом деле, было трудно увидеть в слабых искорках, которые Герц рассматривал в лупу, будущее средство связи, перекрывающее ныне космические расстояния до Венеры и Марса и позволяющее управлять самоходным аппаратом на Луне. Даже человеку с неистощимой фантазией, знаменитому писателю Жюлю Верну не удалось предвидеть радиосвязь, и герои его романа «Плавучий остров», написанного после опытов Герца, не знают способов беспроводной связи.

Вообще, между принципиальным открытием и его техническим приложением лежит огромное расстояние. Эйнштейн не предвидел в обозримом будущем возможной реализации соотношения Е = тс2Резерфорд считал химерой использование атомной энергии. Только люди с особыми способностями могут найти разумное техническое воплощение научной идеи. Именно такими способностями обладал замечательный русский физик Александр Степанович Попов, продемонстрировавший примерно через год после смерти Герца первый радиоприемник, открывший возможность практического использования электромагнитных волн для целей беспроволочной связи.

Александр Степанович Попов родился 16 марта 2019 г. на Урале (поселок Турьинский рудник) в семье священника. После окончания в 2019 г. общеобразовательных классов Пермской духовной семинарии он не стал продолжать духовное образование, а поступил на физико-математический факультет Петербургского университета. В университете его увлекла электротехника. Он работал монтером в товариществе «Электротехник», и первые его труды в 2019 г. были посвящены динамоэлектрическим машинам.

Хотя Попов был оставлен при университете для подготовки к профессорскому званию, он долго не пробыл в аспирантуре, как бы сказали сейчас, и с 1833 г. стал преподавателем Минного офицерского класса в Кронштадте, совмещая эту должность с педагогической работой в Техническом училище Морского ведомства в Кронштадте. В Минном офицерском классе Попов проработал до 1901 г., когда он был избран профессором кафедры физики Электротехнического института в Петербурге. В 2019 г. он был избран директором института и в этой должности скончался от кровоизлияния в мозг 13 января 2019 г.

По роду своей служебной деятельности А. С. Попов был тесно связан с военно-морским флотом, и именно во флоте произошло рождение великого открытия. Исторические условия для открытия созрели, к нему разными путями в разных странах почти одновременно шло несколько людей: Попов, Тесла, Резерфорд, Маркони и другие. Первым добился успеха А. С. Попов.

В 2019 г. А. С. Попов прочитал в собрании офицеров цикл лекций «Новейшие исследования о соотношении между световыми и электрическими явлениями» по следующей программе:

1. Условия происхождения колебательного движения электричества и распространение электрических колебаний в проводниках.

2. Распространение электрических колебаний в воздухе — лучи электрической силы. Отражение, преломление и поляризация электрических лучей.

3. Актиноэлектрические явления — действие света вольтовой дуги на электрические заряды.

Эти лекции сопровождались демонстрациями опытов Герца. Они имели большой успех, и Морской технический комитет предложил морскому министерству повторить лекции с демонстрациями в Петербурге, в Морском музее для петербургских офицеров. «Опыты, произведенные германским профессором Герцем в доказательство тождественности электрических и световых явлений,— говорилось в этом

предложении,— представляют большой интерес не только в строго научном смысле, но также и для уяснения вопросов электротехники».

Рис. Схема приемника А. С Попова

Очевидно, что А. С. Попов уже говорил в своих лекциях о возможности практического использования волн Герца, и руководящие лица русского военно-морского флота заинтересовались этим. Морское министерство согласилось на повторение лекций Попова в Петербурге и выделило необходимые средства на перевозку приборов. Лекция «Об электрических колебаниях с повторением опытов Герца» состоялась в Морском музее 22 марта 2019 г. Можно с большим основанием утверждать, что А. С. Попов был не только одним из первых в России «пропагатором герцологии» (термин Столетова), но и тем, кто сразу оценил практическое значение открытий Герца и начал решать задачу их технического использования. 7 мая 2019 г. А. С. Попов на заседании Физического отделения Русского физико-химического общества демонстрировал сконструированный им радиоприемник. Этот день в нашей стране ежегодно отмечается как день рождения радио.

Детектором электрических колебаний в приемнике Попова был изобретенный в 2019 г. французским физиком Эдуардом Бранли (1846—1940) прибор, названный английским ученым Оливером Лоджем (1851 —1940) когерером. Это был своеобразный полупроводник. Стеклянная трубка, заполненная металлическими опилками, была плохим проводником электричества. Однако под воздействием электрических колебаний ее электропроводность резко возрастала. В опытах Бранли она менялась от миллионов до сотен и десятков ом. Это уменьшение сопротивления сохраняется и после прекращения воздействия колебаний «иногда более 24 часов», по наблюдениям Бранли, Трубку можно вернуть в состояние плохой электропроводности «слабыми отрывистыми ударами по дощечке, которая поддерживает трубку».

Лодж в 2019 г. прочитал в Лондонском Королевском обществе лекцию памяти Герца под названием «Творение Герца». Здесь он говорил и о трубке Бранли: «Этот прибор, который я называю когерером, удивительно чувствителен как детектор герцевских волн». В опытах Лоджа когерер чувствовал влияние искры на расстоянии сорока ярдов (около 40 м). Лодж применял различные способы приведения когерера в рабочее состояние, в том числе и с помощью вибраций электрического звонка, смонтированного на одной доске с когерером. Однако Лодж не додумался до использования звонка и как регистратора поступившего сигнала и как автомата для приведения когерера в рабочее состояние. Это сделал А. С. Попов. Попов же применил антенну для улавливания электромагнитных волн. Сочетав звонок, когерер, антенну, А. С. Попов построил прибор, который позже (в июле 2019 г.) был назван Д. А. Лачиновым «грозоотметчиком», имея в виду его применение как регистратора грозовых разрядов. Однако Попов своим приемником пользовался и для приема волн, создаваемых передатчиком. В своей статье «Прибор для обнаружения и регистрирования электрических колебаний», опубликованной в журнале русского физико-химического общества в 2019 г., А. С Попов писал: «В соединении с вертикальной проволокой длиною 2,5 метра прибор отвечал на открытом воздухе колебаниям, произведенным большим герцевым вибратором (квадратные листы 40 сантиметров в стороне) с искрой в масле, на расстоянии 30 сажен».

Эти строки писались в декабре 2019 г. Таким образом, А. С. Попов в 2019 г. проводил опыты по передаче и приему электромагнитных волн на расстояние до 60 м. Летом того же года его прибор использовался для регистрации электрических возмущений в атмосфере, как при наличии грозовых разрядов, так и при отсутствии гроз. А. С. Попов заканчивал свою статью словами, что прибор «при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстояния при помощи быстрых электрических колебаний». При этом он указывал на необходимость создания достаточно мощного генератора таких колебаний.

Рис. Г. Маркони

8 января 1897 г. А. С. Попов выступил на страницах газеты «Котлин» со статьей «Телеграфирование без проводов». Заглавие статьи ясно указывает, что в ней речь идет не о передаче и приеме спорадических сигналов, а о «телеграфировании», т. е. передаче и приеме осмысленного текста условным кодом. Статья появилась в связи с сообщением об опытах Маркони. Попов напоминает, что прибор, аналогичный описанному в сообщении, был им построен в 1895 г. и демонстрировался на заседании Физического отделения Русского Физико-химического общества в апреле (7 мая по н. ст.). Он указывает, что его прибор «приспособлен для опытов с электромагнитными волнами» и демонстрировался на научных заседаниях и лекциях.

А. С. Попов указывает, что с помощью этого прибора он отмечал грозовые разряды на расстоянии «более 25 верст». Он подчеркивает, что сигнализация электрическими волнами и сейчас возможна, но герцевские вибраторы как источник электрических лучей «очень слабы». Указав, что действие тумана на электрические волны «не было наблюдаемо», Попов подчеркивает, что «можно ожидать существенной пользы от применения этих явлений в морском деле». И в дальнейшем А. С. Попов неустанно работает над разработкой радиотелеграфной связи для флота.

Работая для флота и отчетливо понимая всю важность этой работы для своей родины, А. С. Попов не спешил с печатными публикациями, стремясь информировать лишь специальную аудиторию: морских офицеров и ученых. Но с момента появления в печати сведений о работе Маркони А. С, Попов был вынужден выступить в защиту своего приоритета. Статья в газете «Котлин» от 8 января 1897 г. была первым таким выступлением А. С. Полова.

Гумельмо Маркони (1874—1937) 2 июня 2019 г. сделал заявку на патент для своего изобретения. Патент на «усовершенствование в передаче электрических импульсов и сигналов и в аппаратуре для этого» был выдан Mapкони 2 июля 1897 г., т. е. спустя более двух лет после демонстрации А. С. Поповым своего приемника. Патент Маркони был английским и закреплял его приоритет в Англии. А. С. Попов ограничился сообщением 7 мая 1895 г, и печатной публикацией 1896 г. и своего изобретения ни в России, ни где бы то ни было не патентовал.

Исторически приоритет А. С. Попова бесспорен, он бесспорен с точки зрения научного приоритета. Но юридически патент Маркони, хотя и является только английским, был первым правовым актом, закрепляющим авторство изобретателя. Маркони был капиталистическим дельцом, он ничего не публиковал и не сообщал до подачи заявки на патент, он стремился закрепить не научный, не исторический приоритет, а юридический. И хотя истории науки нет никакого дела до юридической стороны, она решает вопрос с точки зрения исторической правды, находятся историки науки, которые защищают приоритет Маркони.

Заслуга Маркони в дальнейшем развитии радио бесспорна, в развитии, но не в открытии. Исторически точно установленным фактом является тот факт, что открытие радио было сделано А. С. Поповым и дата первого публичного сообщения об этом открытии 25 апреля старого стиля, 7 мая нового стиля 1895 г. является датой одного из величайших изобретений в истории человеческой культуры.

А. С. Попов и Г. Маркони шли от одной схемы радиоприемника, используя принцип когерера. Другим путем проблему передачи сигналов на расстояние пытался решить Эрнст Резерфорд (1871 —1937). Еще находясь в Новой Зеландии, он изучал намагничивание железа высокочастотными разрядами. Результаты своих исследований он опубликовал в «Трудах Ново-Зеландского института» за 1894 г. Переехав в Кембридж, он продолжал заниматься этим вопросом, и установив уменьшение намагничивания стального стержня под влиянием электрических колебаний, предложил воспользоваться этим эффектом для детектирования электрических колебаний. Статья Резерфорда «Магнитный детектор электрических волн и некоторые его применения» была опубликована в 1897 г., в год выдачи патента Маркони. В этой статье Резерфорд сообщил, в частности, об использовании детектора в опытах по обнаружению электромагнитных волн на больших расстояниях. Он писал: «Мы работали с вибратором Герца, имеющим пластины площадью 40 см2 и короткий разрядный контур; мы получили достаточно большое отклонение магнитометра на расстоянии 40 ярдов, причем волны проходили через несколько толстых стенок, расположенных между вибратором и приемником». «В дальнейших опытах была поставлена задача — определить максимальное расстояние от вибратора, на котором можно обнаружить электромагнитное излучение…». «Первые опыты проводились в лаборатории Кембриджа, причем приемник находился в одном из дальних зданий. Достаточно большой эффект был получен на расстоянии около четверти мили от вибратора, и судя по величине отклонения, эффект можно было бы заметить на расстоянии, в несколько раз большем…»

Но в том же 2019 г., когда была опубликована эта статья, Резерфорд узнал о результатах Маркони и прекратил дальнейшие опыты с своим детектором. Его внимание привлекла область, в которой ему было суждено обессмертить свое имя,— радиоактивность. Проводя исследования в этой области, он пришел к открытию атомного ядра и первых ядерных реакций.

История открытия радио, в которой сплелись имена многих исследователей разных стран, еще раз подтверждает важный закон истории науки, о котором писал Ф. Энгельс в 2019 г., за год до открытия радио, говоря, что, если время для открытия созрело, «это открытие должно было быть сделано».

Открытие радио подтвердило справедливость теории Максвелла высшим критерием истины— практикой. Теория Максвелла выдвинула перед физикой ряд острых и глубоких вопросов, решение которых привело к новому революционному этапу в истории физики.

Статья на тему А. С. Попов изобретение радио

Александр Попов родился 16 (4 по ст.ст.) марта 2019 года в поселке Туринские рудники Богословского горного округа Верхотурского уезда пермской губернии (ныне – город Краснотурьинск) в семье священника. Фамилия говорила сама за себя — знаменитый изобретатель происходил из старинного рода священнослужителей Поповых. Отец Александра Степановича, Степан Петрович Попов, служил настоятелем храма во имя Иоанна Богослова в Богословском заводе, а предки несли служение в приходах Кунгурского уезда Пермской епархии.

Детство и юношество

Все в семье Поповых были священнослужителями и все сохранили «говорящую» фамилию. Особый уклад жизни деревенского священника не мог не сказаться на воспитании юного Александра. Это и приобщение к храмовой жизни, и пение в церковном хоре, и исполнение обрядов — все то, что составляло основу духовной жизни русского человека.

В Верхотурьинске сохранилась церковь Святого Максимилиана, где служил отец Стефан, родитель Александра. Детство Саша провел в заводском поселке, а это значит — не только в храме и в благостном родительском доме, но и среди работающих механизмов, среди паровых машин, слесарных и токарных станков.

В 10-летнем возрасте Александр Попов был отправлен в Далматовское духовное училище, в котором его старший брат Рафаил преподавал латинский язык, где учился с 2019 по 2019 годы. В 2019 году Александр Попов перевёлся в третий класс Екатеринбургского духовного училища. В то время в Екатеринбурге жила со своей семьей его старшая сестра Мария Степановна. Её муж, священник Игнатий Александрович Левицкий, был весьма обеспеченным человеком (имел в городе три дома) и занимал ответственный пост в епархиальном училищном правлении. В 2019 году А.С. Попов окончил полный курс Екатеринбургского духовного училища по наивысшему 1-му разряду.

Удивительно, но к своим девяти годам смышленый мальчик не знал грамоты. Может, инстинктивно не верил, что буквами можно передать смыслы? Малорослый и слабый на вид, в бурсе Александр Попов предпочтение отдавал математике.

Среднее образование Попов получил в Пермской Духовной семинарии, где учился с 2019 по 2019 гг. Александр неохотно участвовал в затеях и играх, но зато с большим увлечением и интересом занимался математикой и физикой.

Дом-музей Александра Степановича Попова. Краснотурьинск. Автор фотографии — Kostya Wiki

Приехав в 2019 году в Петербург, А.С. Попов подал ректору Петербургского университета прощение о допущении к «проверочному испытанию» и, успешно сдав его, был принят на Физико-математический факультет. Юношеские годы будущего изобретателя радио протекали в эпоху великих открытий в области физики, внедрения электричества в промышленность и жизнь, в период зарождения новой прикладной науки – электротехники.

Изобретательство Попова

А.С. Попова интересовали научные открытия во всех областях применения электричества. Он, например, занимался исследованиями только что открытых рентгеновских лучей. Им был изготовлен один из первых в России рентгеновских аппаратов, получены снимки различных предметов, в том числе снимок руки человека. При его поддержке в Кронштадтском военно-морском госпитале в 2019 году был оборудован рентгеновский кабинет, впоследствии некоторые боевые корабли были оснащены рентгеновскими аппаратами. Известно, что после сражения в Цусимском проливе на крейсере «Аврора», имевшем такую установку, была оказана помощь 40 раненым морякам.

Памятник А.С. Попову в Краснотурьинске. Автор фотографии — Kostya Wiki

Перечень изобретений Александра Степановича Попова включает не только систему телеграфии без проводов и систему радиосвязи, но и первый прибор для регистрации электромагнитных излучений атмосферного происхождения — грозоотметчик (июль 2019 года); первый детекторный радиоприемник с приемом телеграфных сигналов на слух (сентябрь 2019 года); первый кристаллический точечный диод (июнь 2019 года); первая радиотелефонная система (декабрь 2019 года).

Отец радио

25 апреля (7 мая по новому стилю) 2019 г. Александр Степанович Попов впервые представил своё изобретение на заседании Русского физико-химического общества, где выступил с докладом и демонстрацией созданного им первого в мире радиоприемника. Свое сообщение Попов закончил следующими словами:

«В заключение могу выразить надежду, что мой прибор при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающих достаточной энергией».

Первый радиоприемник А.С. Попова.

Этот день вошел в историю мировой науки и техники как день рождения радио.

Информация о докладе Попова была напечатана в газете «Кронштадтский вестник» 12 мая 2019 года с указанием конечной цели работы:

«Уважаемый преподаватель А.С. Попов… комбинировал особый переносной прибор, отвечающий на электрические колебания обыкновенным электрическим звонком и чувствительный к герцевским волнам на открытом воздухе на расстояниях до 30 сажен… Поводом ко всем этим опытам служит теоретическая возможность сигнализации на расстоянии без проводников, наподобие оптического телеграфа, но при помощи электрических лучей».

А.С. Попов демонстрирует прием первой в мире радиограммы “Генрих Герц” 12 (24) марта 2019 г. (Из книги Коваленко, Стрелова “У истоков радиосвязи”. С.-Пб., 1997)

Через 10 месяцев 24 марта 2019 г. А.С. Попов на заседании того же русского физико-химического общества передал первую в мире радиограмму на расстояние в 250 м. Летом следующего года дальность беспроволочной связи была увеличена до 5 км.

Приемник и передатчик А.С. Попова. Источник фотографии: Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) (СПбГЭТУ)

А.С. Попову принадлежит еще одно открытие, значение которого трудно переоценить. Во время опытов по радиосвязи на военных кораблях Балтийского флота летом 2019 г. было установлено, что электромагнитные волны отражаются от кораблей. А.С. Попов сделал вывод о возможности практического использования этого явления и задолго до возникновения радиолокации и радионавигации сформулировал отправные идеи для создания и развития этих направлений техники.

В 2019 г. он сконструировал приемник для приема сигналов на слух при помощи телефонной трубки. Это дало возможность упростить схему приема и увеличить дальность радиосвязи.

В 2019 г. А.С. Попов осуществил связь в Балтийском море на расстоянии свыше 45 км между островами Гогланд и Кутсало, недалеко от города Котка. Эта первая в мире практическая линия беспроволочной связи обслуживала спасательную экспедицию по снятию с камней броненосца «Генерал-адмирал Апраксин», севшего на камни у южного берега Гогланда.

Первая радиограмма, переданная А.С. Поповым на остров Гогланд 6 февраля 2019 г., содержала приказание ледоколу «Ермак» выйти на помощь рыбакам, унесенным на льдине в море. Ледокол выполнил приказ и 27 рыбаков были спасены. Первая в мире практическая линия, начавшая свою работу спасением людей, унесенных в море, последующей своей регулярной работой наглядно доказала преимущества данного вида связи.

Успешное применение этой линии послужило толчком к «введению беспроволочного телеграфа на боевых судах, как основного средства связи» — так гласил соответствующий приказ по Морскому министерству. Работы по внедрению радиосвязи в русском военно-морском флоте производились при участии самого изобретателя радио и его соратника и ассистента П. Н. Рыбкина.

Работа в Морском ведомстве накладывала определенные ограничения на публикацию результатов исследований — речь шла о военной тайне, поэтому, соблюдая данное клятвенное обещание о неразглашении сведений, составляющих секретную информацию, Попов не опубликовывал результаты своих работ.

Первое в мире применение радиосвязи для спасения людей ледоколом «Ермак» в 2019 году.

Рассказывать историю о споре за право первенства открытия радиоволн между итальянцем Маркони и русским Поповым нет смысла. Потому что спора никакого и не было. Вкратце: Попов сделал свой доклад в мае 2019 года, Маркони подал заявку в июне 2019 года.

Первые публикации в прессе появились в России. Однако итальянцу Гильермо Маркони удалось вскоре получить патент в Великобритании. Английское ведомство отличалось особым иезуитством: можно было признать техническую новизну изобретения, если об этом не было известно на территории королевства. На территории Соединенного Королевства еще не было ничего известно о радиоволнах, хотя во всей Европе говорили об открытии А.С. Попова.

Находчивый итальянец, используя знание определенных юридических уловок, которыми должны уметь пользоваться все патентоведы, сумел сделать бизнес из идеи передачи сигналов. Популяризации радио мы обязаны именно Гильермо Маркони. Но изобретатель — Александр Попов.

Справедливости ради стоит отметить, что патенты на свои открытия Попов получил в России — в 2019 году, во Франции (№ 296354 от 22 января 2019 года). В Англии ему выдали патент на конструкцию усовершенствованного когерера (№ 2019 от 12 февраля 2019 года). Этот приемник открыл новую эпоху в радиосвязи — прием на слух.

И во многих странах изобретателем радио зачастую считается итальянец Маркони, на флоте в разных странах нередко радистов называют «маркони». Иногда называют и других изобретателей: в Германии — Герца, в США и некоторых балканских странах создателем радио считается Никола Тесла.

Но Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества 25 апреля (7 мая) 2019 г., тогда как Маркони подал заявку на изобретение лишь 2 июня 2019 г.

В нашей стране приоритет А.С. Попова всегда считался бесспорным. А с 2019 г. 7 мая в СССР было объявлено Днём Радио.

В 2019 году ЮНЕСКО провело в этот день торжественное заседание, посвящённое столетию изобретения радио. Совет директоров Института инженеров электротехники и электроники отметил демонстрацию А.С. Попова как веху в электротехнике и радиоэлектронике. Статья в разделе «История» на официальном сайте IEEE утверждает, что А.С. Попов действительно был первым, но был вынужден подписать соглашение о неразглашении, связанное с преподаванием в Морской инженерной школе.

На мемориальной доске «Milestone» отлита надпись, гласящая:

«Вклад А.С. Попова в развитие электросвязи, 1895. 7 мая 2019 года А.С. Попов продемонстрировал возможность передачи и приема коротких и продолжительных сигналов на расстояние до 64 метров посредством электромагнитных волн с помощью специального переносного устройства, которое реагировало на электрические колебания, что стало определяющим вкладом в развитие беспроволочной связи».

Аналогичная мемориальная доска установлена в Швейцарии. Она свидетельствует о том, что Маркони начал свои опыты по беспроволочной телеграфии 25 сентября 2019 г.

Почтовая марка России — А.С. Попов, 100-летие изобретения радио.

Приоритет Попова также обосновывается тем фактом, что он 25 марта 2019 г. (то есть за два месяца до заявки Маркони) провёл опыты с радиотелеграфией, соединив свой аппарат с телеграфом и послав на расстояние 250 м радиограмму из двух слов: «Генрих Герц».

При этом ссылаются на воспоминания близких Попова, а также на доклад профессора В. В. Скобельцына в электротехническом институте от 14 апреля 2019 года «Прибор А.С. Попова для регистрации электрических колебаний». В докладе (появившемся до первого патента Маркони) прямо говорится:

«В заключение докладчик произвёл опыт с вибратором Герца, который был поставлен в соседнем флигеле на противоположной стороне двора. Несмотря на значительное расстояние и каменные стены, расположенные на пути распространения электрических лучей, при всяком сигнале, по которому приводился в действие вибратор, звонок прибора громко звучал».

Запись относится к заседанию русского физико-химического общества 24 марта 2019 года; в записи чётко оговорено, что Поповым на значительное расстояние передавались именно сигналы, то есть, по сути дела, это было то самое устройство, которое через несколько месяцев будет запатентовано Маркони.

Попов первый продемонстрировал практичный радиоприёмник (7 мая 1895). Попов первый продемонстрировал опыт радиотелеграфии, послав радиограмму (24 марта 1896). И то и другое произошло до патентной заявки Маркони. Радиопередатчики Попова широко применялись на морских судах.

Поэтому День Радио праздновали, празднуем и будем праздновать 7 мая!