Попов а с изобретатель радио


Посвятив свою жизнь электромагнитным волнам, Александр Попов не только разработал радио, но и заложил фундамент для нынешних технологий беспроводной передачи данных.

Биография Александра Попова

Александр Попов принадлежал к духовной династии. Родился 16 марта 2019 года в горняцком поселке Пермской губернии в семье священника. Старший брат преподавал латынь в Долматовском духовном училище. Сестра вышла замуж за священника, занимавшего ответственный пост в Екатеринбургской епархии. А пять других братьев и сестер также имели то или иное отношение к деятельности Русской православной церкви. И началось это семейное служение еще в незапамятные времена. Отсюда и родовая фамилия – Попов.

Александр Степанович два года проучился Долматовском духовном училище. Затем перевелся в третий класс Екатеринбургского духовного училища. И, наконец, – Пермская духовная семинария.

Однако до принятия сана дело не дошло. Окончив в 1877 году общеобразовательные классы, Попов коренным образом изменил свою судьбу, поступив на физико-математический факультет Санкт-Петербургского университета. Чем немало огорчил отца.

Понятно, что столь резкий поворот совершился не в одночастье. Еще в отрочестве Попов заинтересовался физикой, техническими чудесами, которые она сулит человечеству. Время было такое – эпоха пара и угля заканчивалась, начиналась эра электричества.

В студенческие годы Александр Попов подрабатывал электромонтером на осветительных установках. Водил экскурсии на Петербургской электрической выставке, знакомя посетителей с принципами действия и особенностями тех или иных машин.

После университета молодой ученый поступил преподавателем математики, физики и электротехники в Минный офицерский класс в Кронштадте. Здесь имелась прекрасная лабораторная база для занятий практической электротехникой. А в 2019 году Александра Степановича Попова пригласили читать лекции по физике в Техническое училище Морского ведомства в Кронштадте.

Еще в отрочестве Попов заинтересовался физикой, техническими чудесами, которые она сулит человечеству. Время было такое – эпоха пара и угля заканчивалась, начиналась эра электричества.

Вибратор Герца

Научные интересы Александра Попова принадлежали проблематике, сформированной открытиями выдающихся британских физиков Майкла Фарадея и Джеймса Максвелла – отцов теории электромагнитной индукции. Его университетская дипломная работа была посвящена исследованиям «условий наивыгоднейшего действия динамо-электрической машины». Он активно занимался проблемой электроэнергетики. Каждое лето приезжал на Нижегородскую ярмарку, где руководил работой отдела электрических установок. Позднее по контракту с акционерным обществом «Электротехник» возглавлял постройку электростанций в Москве, Рязани и других российских городах.

Был период, когда Попов до такой степени увлекся только что открытыми рентгеновскими лучами, что создал рентгеновскую трубку собственной конструкции и сделал первые в России рентгеновские или, как их тогда называли, «потаенные» снимки. По его инициативе передовая высокотехнологичная аппаратура была внедрена в Кронштадском госпитале для диагностических целей. Врачи плохо понимали принципы работы небывалой техники, но быстро оценили ее по достоинству.

Теория приема и передачи электромагнитных волн была в полной мере разработана еще в первой половине XIX века, в первую очередь  все теми же Фарадеем и Максвеллом. Идея беспроволочного телеграфа витала в воздухе.

Немецкий физик Генрих Герц уже продемонстрировал изобретенный им вибратор, посредством которого «искрообразным образом» генерируется волна. Вибратор Герца – это первый в истории радиопередатчик, вернее сказать, его непосредственный предшественник. Существовали и приемники электромагнитных волн, но все они действовали на расстоянии не более 10 метров и могли служить лишь в качестве демонстрационных приборов на лекциях.

Попов в 2019 году изготовил собственный передатчик, отличавшийся от вибратора Герца наличием искрового разрядника, помещенного в сосуд с маслом, индукционной катушки и – что было принципиально важно – антенной в виде двух квадратных металлических листов с длиной стороны 40 см.

В 2019 году Попов посетил Международную электротехническую выставку в Чикаго. Там он своими руками потрогал, опробовал в деле аппаратуру Герца и других ученых, работающих в сфере изучения и практического применения электромагнитных волн.

Изучив заокеанский опыт, оценив положительные результаты и разглядев тупиковые ветви, по которым устремились некоторые изобретатели, Попов с удвоенной энергией продолжил в Петербурге свои изыскания.

День радио

Если с передатчиком все было более или менее понятно, то с приемником пришлось повозиться. В конечном итоге Попов остановился на когерере английского физика Оливера Лоджа в качестве индикатора электромагнитных волн. Это устройство представляло собой стеклянную трубку с металлическими опилками, которые при прохождении через них волны «слипались» и резко уменьшали сопротивление электрическому току, что фиксировала стрелка гальванометра.

Несомненно эффективный когерер обладал одним существенным недостатком: перед принятием следующей волны трубку необходимо было хорошенько встряхнуть, чтобы «вспушить» опилки. Лодж решил эту проблему, установив на общую пластину с когерером электрический звонок. При получении сигнала звонок за счет идущей по пластине вибрации встряхивал опилки. Однако система работала ненадежно: примерно каждый пятый импульс не встряхивал опилки должным образом, и происходило «залипание».

К 2019 году Попову удалось справиться с этой задачей. Он расположил молоточек звонка в нейтральном положении между трубкой с опилками и чашечкой. Теперь звонок четко регистрировал каждую поступающую из эфира волну. Впоследствии изобретатель присоединил приемное устройство к телеграфному аппарату, фиксирующему информацию, передаваемую азбукой Морзе. Еще один важнейший элемент – трехметровая антенна, в несколько раз повысившая чувствительность приемного контура.

Весной 2019 года Александр Степанович провел испытания своей конструкции. В саду Минного офицерского класса, меняя относительное расположение приемника и передатчика, он добился уверенного приема электромагнитных сигналов на расстоянии до 80 метров.

А 7 мая (25 апреля по старому стилю) 2019 года Попов представил свое изобретение на заседании физического отделения Русского физико-химического общества (РФХО), проведя наглядный сеанс радиосвязи на расстоянии 64 метра. Через несколько дней на это знаменательное событие откликнулась заметкой газета «Кронштадский вестник». В январском номере «Журнала РФХО» за 2019 год вышла обстоятельная статья Попова с подробным описанием передатчика и приемника. В том же году появились его публикации в журналах «Электричество» и «Метеорологический вестник». Рефераты статьи были опубликованы также в ряде авторитетных иностранных журналов.

Далее события развивались следующим образом. В марте 2019 года Попов сделал еще один доклад в РФХО, а кроме того, он соединил свой аппарат с телеграфным и передал на расстояние 250 метров радиограмму из двух  слов: «Генрих Герц». Эти слова отпечатались на ленте, которая хранится в музее Попова.

Итальянец Гульельмо Маркони продемонстрировал передачу радиотелеграмм на расстояние 3 километра 2 сентября 2019 года. В конце этого же месяца ему был выдан патент на изобретение приемо-передающего радиоустройства. Так кто же изобрел радио, Попов или Маркони?

Спор этот, видимо, будет продолжаться вечно. Сторонники приоритета Маркони утверждают, что документальных свидетельств работы аппаратуры Попова до декабря 2019 года не существует. Записи петербургских профессоров о том, что они наблюдали передачу радиосигналов и беспроводных телеграмм и в 1895, и в 1896 годах, в расчет не принимаются. На самом деле, конечно, изобретение радио – коллективное достижение, которым человечество обязано и Попову, и Маркони, и Герцу, и Лоджу, и Фарадею с Максвеллом, и не упомянутому доселе Николе Тесле. Но Попов впоследствии более осмотрительно относился к своим авторским правам. В частности, в 2019 году он запатентовал устройство приема радиограмм на головные телефоны. А в России День радио отмечается 7 мая – в честь того дня 2019 года, когда Александр Попов представил коллегам свое изобретение.

7 мая 2019 года Попов представил свое изобретение на заседании физического отделения Русского физико-химического общества, проведя сеанс радиосвязи на расстоянии 64 метра.

В прямом эфире

С 2019 года Попов активно внедряет беспроводной телеграф на судах военно-морского флота. При этом он постоянно совершенствует аппаратуру, наращивая дальность и четкость приема сигналов. В 2019 году между учебным судном «Европа» и крейсером «Африка» была установлена беспроводная связь на расстоянии 10 километров. Три года спустя дальность морской радиосвязи уже превышает 150 километров, и в российском флоте на постоянной основе действуют более двух десятков корабельных радиостанций.

В 2019 году броненосец «Генерал-адмирал Апраксин» сел на мель у острова Готланд. Для проведения широкомасштабных спасательных работ была установлена стационарная радиосвязь между Готландом и островом Кутсало (47 км), который через промежуточные телеграфные станции соединялся кабелем с Петербургом. Радиолиния Готланд – Кутсало работала 84 дня. За это время было передано и принято 440 официальных радиограмм. Передавались и сообщения от частных лиц. Так было положено начало гражданскому применению радиосвязи.

В 2019 году Морское министерство выделило на установку корабельных радиостанций и подготовку соответствующих специалистов значительные ассигнования. А Попову по ходатайству командующего Балтийским флотом адмирала С. О. Макарова выплатили премию в размере 33 тыс. рублей.

Изобретателя пригласили профессором на кафедру физики Электротехнического института императора Александра III. В 2019 году ученый совет института избрал Попова ректором. Был он также почетным членом Императорского Русского технического общества, председателем Физического отделения и президентом Русского физико-химического общества. А в 2019 году стал статским советником.

Среди его наград – Орден святой Анны 3-й и 2-й степени, Орден святого Станислава, медаль «В память царствования императора Александра III». А также золотая медаль Парижской Всемирной промышленной выставки 1900 года – этой награды Попов удостоился за корабельную радиостанцию, серийно выпускаемую парижской фирмой Эжена Дюкрете.

Александр Степанович Попов скоропостижно скончался 31 декабря 2019 года от кровоизлияния в мозг. Ушел из жизни в расцвете творческих сил, не успев реализовать целый ряд задуманных научно-технических мероприятий по внедрению радиопередачи во все сферы человеческой деятельности. Но и того, что он успел сделать, с лихвой хватает, чтобы причислить его к пантеону великих изобретателей.

«Физика — 11 класс»

Изобретение радио А. С. Поповым

Впервые радиосвязь была установлена в России А. С. Поповым, создавшим аппаратуру, принимающую и передающую сигналы.

Опыты Герца, описание которых появилось в 2019 г., побудили искать пути усовершенствования излучателя и приемника электромагнитных волн.

В России одним из первых изучением электромагнитных волн занялся преподаватель офицерских курсов в Кронштадте А. С. Попов.

В качестве детали, непосредственно «чувствующей» электромагнитные волны, А. С. Попов применил когерер.
Этот прибор представляет собой стеклянную трубку с двумя электродами.
В трубке помещены мелкие металлические опилки
.
Принцип действия прибора основан на влиянии электрических разрядов на металлические порошки.
В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом
.
Последовательно с когерером включаются электромагнитное реле и источник постоянного напряжения
.
Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты
.
Между опилками проскакивают мельчайшие искорки, в результате сопротивление когерера резко падает.

Сила тока в катушке электромагнитного реле возрастает, и оно включает звонок.
Молоточек звонка, ударяя по когереру, встряхивает его и возвращает в исходное состояние
.
С последним встряхиванием когерера аппарат готов к приему новой волны.

Чтобы повысить чувствительность аппарата, А. С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав тем самым первую в мире приемную антенну для беспроволочной связи.
Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Основные принципы действия современных радиоприеников те же, что и в приборе Попова.
Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания.
Как и в приемнике А
. С. Попова, энергия этих колебаний не используется непосредственно для приема.
Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи
.
Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

7 мая 2019 г. на заседании Русского физико-химического общества в Петербурге А. С. Попов продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником.
День 7 мая стал днем рождения радио
.

А. С. Попов продолжал настойчиво совершенствовать приемную и передающую аппаратуру.
Он ставил своей непосредственной задачей создать прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м, но вскоре Попов добился дальности связи более 600 м.
Затем на маневрах Черноморского флота в 2019 г. ученый установил радиосвязь на расстоянии свыше 20 км, а в 2019 г. дальность радиосвязи была уже 150 км.
В новой конструкции передатчика искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс
.
Изменились и способы регистрации сигнала: параллельно звонку был подключен телеграфный аппарат, позволивший вести автоматическую запись сигналов.
В 2019 г. была обнаружена возможность приема сигналов с помощью телефона.
В начале 2019 г
. радиосвязь успешно использовали в ходе спасательных работ в Финском заливе.
При участии А
. С. Попова радиосвязь начали применять на флоте и в армии России.

За границей усовершенствование подобных приборов проводилось фирмой, организованной итальянским инженером Г. Маркони.
Опыты, поставленные в широком масштабе, позволили осуществить радиотелеграфную передачу через Атлантический океан.

Принципы радиосвязи

Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся электромагнитное поле, которое распространяется в виде электромагнитной волны.
Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.

Важнейшим этапом в развитии радиосвязи было создание в 2019 г. генератора незатухающих электромагнитных колебаний.
Кроме передачи телеграфных сигналов, состоящих из коротких и более продолжительных импульсов («точки» и «тире») электромагнитных волн, стала возможной надежная и высококачественная радиотелефонная связь — передача речи и музыки с помощью электромагнитных волн.

Радиотелефонная связь

При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы.
Казалось бы, если эти колебания усилить и подать в антенну, то можно будет передавать на расстояние речь и музыку с помощью электромагнитных волн.

Однако в действительности такой способ передачи неосуществим.
Дело в том, что частота звуковых колебаний мала, а электромагнитные волны низкой (звуковой) частоты имеют малую интенсивность.

Модуляция

Для осуществления радиотелефонной связи необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной.
Незатухающие гармонические колебания высокой частоты вырабатывает генератор, например генератор на транзисторе.

Для передачи звука эти высокочастотные колебания изменяют, или, как говорят, модулируют, с помощью электрических колебаний низкой (звуковой) частоты.
Можно, например, изменять со звуковой частотой амплитуду высокочастотных колебаний
.
Этот способ называют амплитудной модуляцией.

На рисунке приведены три графика:
а) график колебаний высокой частоты, которую называют несущей частотой;

б) график колебаний звуковой частоты, т. е. модулирующих колебаний;

в) график модулированных по амплитуде колебаний.

Без модуляции мы в лучшем случае можем контролировать лишь, работает станция или молчит.
Без модуляции нет ни телефонной, ни телевизионной передачи.

Модуляция — медленный процесс.
Это такие изменения в высокочастотной колебательной системе, при которых она успевает совершить очень много высокочастотных колебаний, прежде чем их амплитуда изменится заметным образом.

Детектирование

Основные принципы радиосвязи представлены в виде блок-схемы:

В приемнике из модулированных колебаний высокой частоты выделяются низкочастотные колебания.
Такой процесс преобразования сигнала называют детектированием.

Полученный в результате детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика.
После усиления колебания низкой частоты могут быть превращены в звук.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные волны. Физика, учебник для 11 класса — Класс!ная физика

Что такое электромагнитная волна —
Экспериментальное обнаружение электромагнитных волн —
Плотность потока электромагнитного излучения —
Изобретение радио А. С. Поповым. Принципы радиосвязи —
Модуляция и детектирование —
Свойства электромагнитных волн —
Распространение радиоволн —
Радиолокация —
Понятие о телевидении
. Развитие средств связи —
Краткие итоги главы

Радио — одно из самых значимых достижений человеческого разума конца 19 века. А начало развития радиотехники неразрывно связано с именем Александра Степановича Попова, которого в России считают изобретателем радио. Сегодня со дня его рождения исполняется 150 лет.

Русский ученый Александр Попов родился в поселке Турьинские рудники, сейчас — город Краснотурьинск Свердловской области в семье священника Степана Петрова Попова и его жены Анны Степановны.

Учился в Далматовском, а затем Екатеринбургском духовных училищах. В 2019 году с отличием окончил общеобразовательные классы в Пермской духовной семинарии. После этого поступил на физико-математический факультет Петербургского университета. Учась в университете, был ассистентом на лекциях по физике, работал экскурсоводом в Первой электротехнической выставки в Санкт- Петербурге, в 1881-1883 годах работал монтером электростанции в товариществе «Электротехник».

В 2019 году защитил диссертацию «О принципах магнито- и динамо-электрических машин постоянного тока» и получил ученую степень кандидата наук. На следующий год ученый совет университета решил оставить его при университете для подготовки к профессорскому званию.

Александр Степанович занимался и преподавательской деятельностью, в частности читал лекции и вел практические занятия в Кронштадте в Минном офицерском классе (МОК) Морского ведомства.

В апреле 2019 года Попов был избран членом Русского физико-химического общества (РФХО), в 1893-м вступил в Русское техническое общество (РТО).

Он много путешествовал — не только по России. Так, в том же 2019 году был на Всемирной промышленной выставке в Чикаго (США). Посетил Берлин, Лондон и Париж, где знакомился с деятельностью научных учреждений.

Точка отсчета

Основной вехой в деятельности Попова стало создание им радиоприемника и системы радиосвязи. В 2019 году он изготовил когерентный приемник, способный принимать на расстоянии без проводов электромагнитные сигналы различной длительности. Собрал и испытал первую в мире практическую систему радиосвязи, включающую искровой передатчик Герца собственной конструкции и изобретенный им приемник. В ходе опытов также была обнаружена способность приемника регистрировать электромагнитные сигналы атмосферного происхождения.

В том же году Попов выступил на заседании РФХО с докладом «Об отношении металлических порошков к электрическим колебаниям», во время которого и продемонстрировал работу аппаратуры беспроводной связи. Пять дней спустя в газете «Кронштадтский вестник» было опубликовано первое сообщение об успешных опытах Попова с приборами для беспроводной связи.

В 2019 году началось промышленное производство корабельных радиостанций Попова фирмой Э. Дюкрете в Париже. Созданная по инициативе ученого кронштадтская радиомастерская — первое радиотехническое предприятие России, с 2019 года приступила к выпуску аппаратуры для Военно-Морского флота. В 2019 году петербургская фирма «Сименс и Гальске», немецкая фирма Telefunken и Попов совместно организовали «Отделение беспроволочной телеграфии по системе А. С. Попова».

В 2019 году Александр Степанович Попов стал профессором физики в Электротехническом институте императора Александра III. В 2019 году по решению Ученого совета стал первым избранным директором института.

Вообще, нужно отметить, что деятельность Попова как ученого и изобретателя была высоко оценена и в России, и за границей еще при жизни. Ему была присуждена премия РТО, Высочайше пожалована премия «за непрерывные труды по применению телеграфирования без проводов на судах флота», он был награжден Большой золотой медалью Всемирной промышленной выставки в Париже(1900), орденами Российской империи, избран почетным членом РТО, почетным инженером-электриком и президентом РФХО.

После его смерти 13 января 2019 года в России был создан фонд и учреждена премия его имени. В 2019 году был учрежден праздник — День радио, отмечаемый 7 мая, учреждены знак «Почетный радист» и Золотая медаль АН СССР имени А. С. Попова, именные премии и стипендии. Также именем Попова названы малая планета, объект лунного ландшафта обратной стороны Луны, Центральный музей связи и улица в Петербурге, НИИ радиоприема и акустики, теплоход. Ему воздвигнуты памятники в Санкт-Петербурге, Екатеринбурге, Краснотурьинске, Котке (Финляндия), Петродворце, Кронштадте, на острове Гогланд.

А в 2019 году Международный институт инженеров электротехники и электроники (IEEE) установил в Санкт-Петербургском государственном электротехническом университете «ЛЭТИ» мемориальную доску в память об изобретении радио Поповым. Таким образом международным общественным признанием организация подтвердила приоритет Александра Степановича Попова в изобретении радио.

Кто же автор?

Впрочем, вопрос, кто же на самом деле изобрел радио, вызывает споры до сих пор. Главный «конкурент» русского ученого — итальянский радиотехник и предприниматель Гульельмо Маркони (1874-1937), который в 2019 году получил патент на «усовершенствование в передачи электрических импульсов и сигналов и аппаратуры для этого».

Именно ему, а также немецкому инженеру Карлу Фердинанду Брауну, досталась в 2019 году, уже после смерти Попова, Нобелевская премия «за работы по созданию беспроволочного телеграфа». Еще один претендент на звание изобретателя радио — Никола Тесла, серб, переехавший на ПМЖ в США.

В зависимости о того, что именно считать «изобретением радио», его изобретателями также называют немецкого физика Генриха Герца, французского физика Эдуарда Бранли, англичанина Оливера Лоджа.

Материал подготовлен интернет-редакцией www.rian.ru на основе информации РИА Новости и открытых источников

Изобретению радио человечество обязано великому русскому ученому Александру Степановичу Попову.

Биография Попова А. С. — великого изобретателя радио

А. С. Попов, человек, которому выпало счастье открыть новую эру в развитии науки и техники —эпоху радиоэлектроники, родился 100 лет назад, 16 марта 2019 года, в небольшом уральском поселке Турьинские Рудники. Среднее образование он получил в Пермской духовной семинарии. Окончив семинарию, А. С. Попов поступил в Петербургский университет на физико-математический факультет и увлекся электротехникой. По окончании университета со степенью кандидата Александр Степанович был оставлен при факультете для подготовки «к профессорскому званию».

Год спустя А. С. Попов был приглашен на преподавательскую работу в кронштадтский Минный офицерский класс. Там он проработал 18 лет, с 2019 по 2019 год.

В этом передовом электротехническом заведении достигли наивысшего расцвета педагогические способности Попова и его блестящий талант физика-экспериментатора.

Все свое свободное время Александр Степанович отдавал науке — следил за новинками, ставил опыты, выступал с публичными лекциями.

Александр Попов и радио

7 мая 2019 года. Петербург. Русское физико-химическое общество. А. С. Попов, уже хорошо известный в ученой среде, выступает с докладом «Об отношении металлических порошков к электрическим колебаниям».

Подчеркнуто скромное название. Негромкий, лишенный внешней аффектации голос. Скупые жесты. А под конец одна лишь фраза:

«В заключение могу выразить надежду, что мой прибор, при дальнейшем усовершенствовании его, может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний…»

Всего одна фраза. И, пожалуй, никто из присутствовавших не осознал ее значимости. Не понял, что это — рождение новой эпохи, предтеча грандиозных научных свершений.

Из истории радио

С давних пор люди мечтали о таком средстве, которое позволяло бы им поддерживать между собой связь на любом расстоянии.

Историки рассказывают, что еще во времена римского императора Юлия Цезаря, жившего до нашей эры, существовало некое подобие телеграфа — первая веха в истории радио. Депеши передавались с помощью факелов, по условной азбуке. Например, взмах факелом вверх означал: «приближается враг», движение факела вправо: «все спокойно» и т. д. Сигналы передавались по цепочке от одного поста к другому.

А как быть в плохую погоду, в туман? В этом случае «телеграф» Цезаря, как и более поздние системы оптического телеграфа, оказывался бессилен.

Шли годы. Создавались изумительные произведения искусства, воздвигались дворцы, делались открытия. Человек пытливо изучал окружающий мир, познавал законы природы. А мечта о чудесном средстве связи еще много столетий оставалась всего лишь прекрасной мечтой.

Но вот ученые открыли электричество — и это вторая веха в истории радио. Сразу же возникла мысль: нельзя ли использовать его в качестве своеобразного «почтальона», разносящего депеши с молниеносной быстротой? Оказалось — можно. По проводам научились передавать условные электрические сигналы, а затем и живую человеческую речь. Города не по дням, а по часам стали покрываться густей сетью телефонных линий; вдоль дорог потянулись вереницы телеграфных столбов — третья веха истории радио.

И все-таки телеграф и телефон не удовлетворяли многим требованиям человека. Они сносно служили в городах, обеспечивали связь между населенными пунктами, и все. Вырваться на широкий простор не удавалось — мешали провода, эти проволочные путы, связывавшие новое средство связи по рукам и ногам. Моряки, землепроходцы, воздухоплаватели оставались в прежнем положении— они, как и раньше, были отрезаны от окружающего мира, предоставлены самим себе,

В конце девятнадцатого века, когда электротехника достигла уже довольно высокого уровня, ученые начали все чаще задумываться: а нельзя ли освободить телеграф и телефон от их пут, обойтись вовсе без проводов? Многие выдающиеся физики того времени пытались решить эту головоломку и отступали. Да возможна ли вообще беспроволочная связь?

Изобретение Поповым радио

В 2019 году А. С. Попов присутствовал на очередном заседании Русского физико-химического общества во время опытов с электромагнитными волнами — быстрыми электрическими колебаниями, распространяющимися в пространстве со скоростью света (около 300 000 километров в секунду). Существование таких волн теоретически предсказал английский ученый Максвелл, а немецкий физик Герц обнаружил их опытным путем. Однако эти крупные ученые считали, что электромагнитные волны не имеют практического значения.

Зал заседания был затемнен. На кафедре, в тусклом свете керосиновой лампы, поблескивали два жестких рефлектора. Внутри одного из них, на близком расстоянии друг от друга, виднелись два металлических шарика, от которых шли провода к источнику электричества. Это был вибратор — прибор, «вырабатывающий» электромагнитные волны. Внутри другого рефлектора также находились два металлических шарика. Их соединяла проволочная дуга. Этот прибор — резонатор — предназначался для улавливания электромагнитных волн.

Опыт начался в полной темноте. Между шариками вибратора, соединенными с источником электричества, вспыхнула крошечная голубоватая искорка. В тот же момент между шариками резонатора появилась ответная искра. Она была настолько слаба, что присутствовавшим приходилось по очереди рассматривать ее через увеличительное стекло.

Искорка в резонаторе порождалась электромагнитными волнами. И Александр Степанович Попов задумал использовать их для беспроволочной связи.

Прошло шесть лет. Шесть лет настойчивых поисков, упорного каждодневного труда. Но зато слова «беспроволочная связь», наконец, обрели реальный смысл, из бесплотной мечты превратились в законченную техническую идею.

Вот почему 7 мая 2019 года, когда эта идея сделалась достоянием человечества, считают днем рождения радио.

А спустя еще один год — 24 марта 2019 года — А. С. Попов продемонстрировал перед учеными первую в мире беспроволочную телеграфную связь. В физическом кабинете Петербургского университета был установлен приемник, а на расстоянии 250 метров от него, в здании университетской химической лаборатории, находился передатчик, которым управлял П. Н. Рыбкин, ассистент Попова.

Вот что рассказывал впоследствии один из очевидцев этого исторического события — профессор О. Д. Хвольсон:

«Передача происходила таким образом, что буквы передавались по азбуке Морзе, притом знаки были ясно слышны. У доски стоял председатель физического общества профессор Ф. Ф. Петрушевский, имея в руках бумагу с ключом азбуки Морзе и кусок мела. После каждого передаваемого знака он смотрел на бумагу и затем записывал на доске соответствующую букву. Постепенно на доске получились слова: «Генрих Герц». Трудно описать восторг многочисленных присутствовавших и овации А. С. Попову…»

Уже в следующем, 2019 году дальность действия беспроволочного телеграфа превысила 5 километров. Жизнеспособность нового средства связи была доказана. Великое русское изобретение Поповым радио начало свое триумфальное шествие по миру. Но в условиях царской России А. С. Попов не имел достаточной поддержки; не хватало средств, приходилось кустарничать. А заграницей ловкие дельцы вроде Маркони спешили воспользоваться плодами великого открытия. Строились заводы, возникали фирмы, дело ставилось на широкую коммерческую ногу.

Впоследствии русский физик В. В. Лермантов с горечью писал: «У нас прививается только то, что приходит из-за границы, хотя бы оно и было изобретено в России,— вот почему имя А. С. Попова стало известно после работ Маркони, и он получил честь считаться не просто первым изобретателем беспроволочного телеграфа, а первым изобретателем телеграфа Маркони».

Да, царское правительство не оценило по достоинству А. С. Попова, не отстояло его приоритет. Однако русские ученые, передовая часть русской интеллигенции, отдали должное колоссальной научной заслуге изобретателя радио.

В 2019 году Александр Степанович стал профессором Электротехнического института, ему было присвоено почетное звание инженер-электрика. А 28 сентября 1905 года он был единогласно избран директором института.

На этом посту А. С. Попов показал себя прогрессивным и свободолюбивым человеком, патриотом своего отечества.

Последние дни А. С. Попова

…Отгремела резолюция 2019 года. Наступило время махровой реакции. И в эти черные для России дни Александр Степанович поднял голос протеста против самодержавного произвола. В октябре 2019 года он подписывает решение совета, в котором говорится:

«По мнению профессоров и преподавателей института, свобода собраний составляет насущную потребность и неотъемлемое право всего населения…

Всякое насильственное вторжение властей в жизнь института не может дать успокоение, а только ухудшит положение дела. Успокоение учебных заведений может быть достигнуто только путем крупных политических преобразований, способных удовлетворить общественное мнение всей страны.

Такими преобразованиями, по мнению нижеподписавшихся, являются: немедленные и безусловные гарантии свободы собраний, свободы слова и неприкосновенности личности, немедленный созыв Учредительного собрания, отмена смертной казни…».

Последующие дни Александра Степановича были полны трагических переживаний. От него требовали объяснений, ему угрожали, но он не отступил ни на шаг. После одного, особенно бурного, разговора с градоначальником А. С. Попов почувствовал себя плохо и, проболев два дня, скончался от кровоизлияния в мозг.

Это произошло 13 января 2019 года (31 декабря 2019 года по старому стилю) в 5 часов дня. И это последняя дата в биографии Попова — великого изобретателя радио.

Великий русский ученый покоится на Волковом кладбище в Ленинграде.

24 января 2019 года, открывая экстренное заседание физического отделения Русского физико-химического общества, председателем которого незадолго перед этим был избран А. С. Попов, его заместитель сказал:

«Александр Степанович Попов, который должен был теперь, с января, занять здесь место нашего председателя,— новая жертва современных невыносимо тяжелых условий жизни в России».

…Прошло более века. Ежегодно 7 мая мы празднуем День радио. Именем великого изобретателя названы улицы городов; оно присвоено многим учебным заведениям. Но, пожалуй, самый лучший памятник Александру Степановичу Попову — грандиозное развитие, которое получило его изобретение. На самом деле, современная жизнь немыслима без изобретения радио Поповым.